Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of Quantitative Trait Loci for Altitude Adaptation of Tree Leaf Shape With Populus szechuanica in the Qinghai-Tibetan Plateau.

Identifieur interne : 000333 ( Main/Exploration ); précédent : 000332; suivant : 000334

Identification of Quantitative Trait Loci for Altitude Adaptation of Tree Leaf Shape With Populus szechuanica in the Qinghai-Tibetan Plateau.

Auteurs : Meixia Ye [République populaire de Chine] ; Xuli Zhu [République populaire de Chine] ; Pan Gao [République populaire de Chine] ; Libo Jiang [République populaire de Chine] ; Rongling Wu [République populaire de Chine, États-Unis]

Source :

RBID : pubmed:32536931

Abstract

As an important functional organ of plants, leaves alter their shapes in response to a changing environment. The variation of leaf shape has long been an important evolutionary and developmental force in plants. Despite an increasing amount of investigations into the genetic controls of leaf morphology, few have systematically studied the genetic architecture controlling shape differences among distinct altitudes. Altitude denotes a comprehensive complex of environmental factors affecting plant growth in many aspects, e.g., UV-light radiation, temperature, and humidity. To reveal how plants alter ecological adaptation to altitude through genes, we used Populus szechuanica var. tibetica growing on the Qinghai-Tibetan plateau. FST between the low- and high- altitude population was 0.00748, QST for leaf width, length and area were 0.00924, 0.1108, 0.00964 respectively. With the Elliptic Fourier-based morphometric model, association study of leaf shape was allowed, the dissection of the pleiotropic expression of genes mediating altitude-derived leaf shape variation was performed. For high and low altitudes, 130 and 131 significant single-nucleotide polymorphisms (SNPs) were identified. QTLs that affected leaf axis length and leaf width were expressed in both-altitude population, while QTLs regulating "leaf tip" and "leaf base" were expressed in low-altitude population. Pkinase and PRR2 were common significant genes in both types of populations. Auxin-related and differentiation-related genes included PIN1, CDK-like, and CAK1AT at high altitude, whereas they included NAP5, PIN-LIKES, and SCL1 at low altitude. The presence of Stress-antifung gene, CIPK3 and CRPK1 in high-altitude population suggested an interaction between genes and harsh environment in mediating leaf shape, while the senescence repression-related genes (EIN2 and JMJ18) and JMT in jasmonic acid pathway in low-altitude population suggested their crucial roles in ecological adaptability. These data provide new information that strengthens the understanding of genetic control with respect to leaf shape and constitute an entirely novel perspective regarding leaf adaptation and development in plants.

DOI: 10.3389/fpls.2020.00632
PubMed: 32536931
PubMed Central: PMC7267013


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of Quantitative Trait Loci for Altitude Adaptation of Tree Leaf Shape With
<i>Populus szechuanica</i>
in the Qinghai-Tibetan Plateau.</title>
<author>
<name sortKey="Ye, Meixia" sort="Ye, Meixia" uniqKey="Ye M" first="Meixia" last="Ye">Meixia Ye</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Xuli" sort="Zhu, Xuli" uniqKey="Zhu X" first="Xuli" last="Zhu">Xuli Zhu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gao, Pan" sort="Gao, Pan" uniqKey="Gao P" first="Pan" last="Gao">Pan Gao</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32536931</idno>
<idno type="pmid">32536931</idno>
<idno type="doi">10.3389/fpls.2020.00632</idno>
<idno type="pmc">PMC7267013</idno>
<idno type="wicri:Area/Main/Corpus">000247</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000247</idno>
<idno type="wicri:Area/Main/Curation">000247</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000247</idno>
<idno type="wicri:Area/Main/Exploration">000247</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of Quantitative Trait Loci for Altitude Adaptation of Tree Leaf Shape With
<i>Populus szechuanica</i>
in the Qinghai-Tibetan Plateau.</title>
<author>
<name sortKey="Ye, Meixia" sort="Ye, Meixia" uniqKey="Ye M" first="Meixia" last="Ye">Meixia Ye</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Xuli" sort="Zhu, Xuli" uniqKey="Zhu X" first="Xuli" last="Zhu">Xuli Zhu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gao, Pan" sort="Gao, Pan" uniqKey="Gao P" first="Pan" last="Gao">Pan Gao</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As an important functional organ of plants, leaves alter their shapes in response to a changing environment. The variation of leaf shape has long been an important evolutionary and developmental force in plants. Despite an increasing amount of investigations into the genetic controls of leaf morphology, few have systematically studied the genetic architecture controlling shape differences among distinct altitudes. Altitude denotes a comprehensive complex of environmental factors affecting plant growth in many aspects,
<i>e.g.</i>
, UV-light radiation, temperature, and humidity. To reveal how plants alter ecological adaptation to altitude through genes, we used
<i>Populus szechuanica</i>
var.
<i>tibetica</i>
growing on the Qinghai-Tibetan plateau.
<i>F</i>
<sub>ST</sub>
between the low- and high- altitude population was 0.00748,
<i>Q</i>
<sub>ST</sub>
for leaf width, length and area were 0.00924, 0.1108, 0.00964 respectively. With the Elliptic Fourier-based morphometric model, association study of leaf shape was allowed, the dissection of the pleiotropic expression of genes mediating altitude-derived leaf shape variation was performed. For high and low altitudes, 130 and 131 significant single-nucleotide polymorphisms (SNPs) were identified. QTLs that affected leaf axis length and leaf width were expressed in both-altitude population, while QTLs regulating "leaf tip" and "leaf base" were expressed in low-altitude population.
<i>Pkinase and PRR2</i>
were common significant genes in both types of populations. Auxin-related and differentiation-related genes included
<i>PIN1, CDK-like</i>
, and
<i>CAK1AT</i>
at high altitude, whereas they included
<i>NAP5, PIN-LIKES</i>
, and
<i>SCL1</i>
at low altitude. The presence of S
<i>tress-antifung</i>
gene,
<i>CIPK3</i>
and
<i>CRPK1</i>
in high-altitude population suggested an interaction between genes and harsh environment in mediating leaf shape, while the senescence repression-related genes (
<i>EIN2</i>
and
<i>JMJ18</i>
) and
<i>JMT</i>
in jasmonic acid pathway in low-altitude population suggested their crucial roles in ecological adaptability. These data provide new information that strengthens the understanding of genetic control with respect to leaf shape and constitute an entirely novel perspective regarding leaf adaptation and development in plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32536931</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of Quantitative Trait Loci for Altitude Adaptation of Tree Leaf Shape With
<i>Populus szechuanica</i>
in the Qinghai-Tibetan Plateau.</ArticleTitle>
<Pagination>
<MedlinePgn>632</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.00632</ELocationID>
<Abstract>
<AbstractText>As an important functional organ of plants, leaves alter their shapes in response to a changing environment. The variation of leaf shape has long been an important evolutionary and developmental force in plants. Despite an increasing amount of investigations into the genetic controls of leaf morphology, few have systematically studied the genetic architecture controlling shape differences among distinct altitudes. Altitude denotes a comprehensive complex of environmental factors affecting plant growth in many aspects,
<i>e.g.</i>
, UV-light radiation, temperature, and humidity. To reveal how plants alter ecological adaptation to altitude through genes, we used
<i>Populus szechuanica</i>
var.
<i>tibetica</i>
growing on the Qinghai-Tibetan plateau.
<i>F</i>
<sub>ST</sub>
between the low- and high- altitude population was 0.00748,
<i>Q</i>
<sub>ST</sub>
for leaf width, length and area were 0.00924, 0.1108, 0.00964 respectively. With the Elliptic Fourier-based morphometric model, association study of leaf shape was allowed, the dissection of the pleiotropic expression of genes mediating altitude-derived leaf shape variation was performed. For high and low altitudes, 130 and 131 significant single-nucleotide polymorphisms (SNPs) were identified. QTLs that affected leaf axis length and leaf width were expressed in both-altitude population, while QTLs regulating "leaf tip" and "leaf base" were expressed in low-altitude population.
<i>Pkinase and PRR2</i>
were common significant genes in both types of populations. Auxin-related and differentiation-related genes included
<i>PIN1, CDK-like</i>
, and
<i>CAK1AT</i>
at high altitude, whereas they included
<i>NAP5, PIN-LIKES</i>
, and
<i>SCL1</i>
at low altitude. The presence of S
<i>tress-antifung</i>
gene,
<i>CIPK3</i>
and
<i>CRPK1</i>
in high-altitude population suggested an interaction between genes and harsh environment in mediating leaf shape, while the senescence repression-related genes (
<i>EIN2</i>
and
<i>JMJ18</i>
) and
<i>JMT</i>
in jasmonic acid pathway in low-altitude population suggested their crucial roles in ecological adaptability. These data provide new information that strengthens the understanding of genetic control with respect to leaf shape and constitute an entirely novel perspective regarding leaf adaptation and development in plants.</AbstractText>
<CopyrightInformation>Copyright © 2020 Ye, Zhu, Gao, Jiang and Wu.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Meixia</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Xuli</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Pan</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Libo</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Rongling</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus szechuanica</Keyword>
<Keyword MajorTopicYN="N">QTL</Keyword>
<Keyword MajorTopicYN="N">Qinghai-Tibetan Plateau</Keyword>
<Keyword MajorTopicYN="N">altitude</Keyword>
<Keyword MajorTopicYN="N">leaf shape</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32536931</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.00632</ArticleId>
<ArticleId IdType="pmc">PMC7267013</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 2008 Jan;154(4):625-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17943318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jul;65(14):4023-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24659488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Feb;43(2):159-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Feb;14(1):24-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20870452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Nov;138(3):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7851788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(3):387-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 May;190(3):724-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21294735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Jun;197(2):573-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24700103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 May 25;287(22):18408-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22493451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2017 Aug;215:11-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28527334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Jan 31;13:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23368817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2007 Feb;16(4):891-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17284219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Nov;17(22):4782-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2017 Dec;30(12):2116-2131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28977711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2017 Apr 6;66(1):117-128.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28344081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Sep;11(9):623-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20697423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Jun;82(6):1004-1017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25942995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2014 Jul;15(4):571-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23460593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Oct 29;4(10):e7653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19893620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Jun;19(6):390-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24491827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Apr 4;26(7):R297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27046820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Apr;13(4):151-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18299247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2019 May 30;177(6):1405-1418.e17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31130379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Oct;175(2):874-885</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28842549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 15;21(10):2469-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15769837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3424-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21300866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2011 Mar;107(3):455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21199835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2019 Jul;25(7):2485-2498</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31056841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Feb 14;343(6172):780-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24531971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 1;27(15):2156-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2013 Jun;110(6):511-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23572125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Apr 15;485(7396):119-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22504182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Eugen. 1951 Mar;15(4):323-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24540312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2019 Feb;31(2):430-443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30712008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2017 Jan;254:48-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27964784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2018 Jul 20;19(4):603-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28203720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Apr;42(4):355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20208535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:477-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Sci. 1999 Nov;160(S6):S113-S121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10572026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jan;66(1):355-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2014;15 Suppl 1:S11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25079034</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Pékin</li>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Ye, Meixia" sort="Ye, Meixia" uniqKey="Ye M" first="Meixia" last="Ye">Meixia Ye</name>
</noRegion>
<name sortKey="Gao, Pan" sort="Gao, Pan" uniqKey="Gao P" first="Pan" last="Gao">Pan Gao</name>
<name sortKey="Gao, Pan" sort="Gao, Pan" uniqKey="Gao P" first="Pan" last="Gao">Pan Gao</name>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<name sortKey="Ye, Meixia" sort="Ye, Meixia" uniqKey="Ye M" first="Meixia" last="Ye">Meixia Ye</name>
<name sortKey="Zhu, Xuli" sort="Zhu, Xuli" uniqKey="Zhu X" first="Xuli" last="Zhu">Xuli Zhu</name>
<name sortKey="Zhu, Xuli" sort="Zhu, Xuli" uniqKey="Zhu X" first="Xuli" last="Zhu">Xuli Zhu</name>
</country>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000333 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000333 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32536931
   |texte=   Identification of Quantitative Trait Loci for Altitude Adaptation of Tree Leaf Shape With Populus szechuanica in the Qinghai-Tibetan Plateau.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32536931" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020